矢崎 成俊/著 -- 共立出版 -- 2019.7 --

所蔵

所蔵は 1 件です。

所蔵館 所蔵場所 資料区分 請求記号 資料コード 所蔵状態 資料の利用
配架日 協力貸出 利用状況 返却予定日 資料取扱 予約数 付録注記 備考
中央 2F 一般図書 /431.8/5026/2019 7111891174 配架図 Digital BookShelf
2019/08/02 可能 利用可   0

Eメールによる郵送複写申込みは、「東京都在住」の登録利用者の方が対象です。

    • 統合検索
      都内図書館の所蔵を
      横断検索します。
      類似資料 AI Shelf
      この資料に類似した資料を
      AIが紹介します。

資料詳細 閉じる

ISBN 4-320-11380-0
ISBN13桁 978-4-320-11380-0
タイトル 動く曲線の数値計算
タイトルカナ ウゴク キョクセン ノ スウチ ケイサン
著者名 矢崎 成俊 /著
著者名典拠番号

110006101400000

出版地 東京
出版者 共立出版
出版者カナ キョウリツ シュッパン
出版年 2019.7
ページ数 11, 330p
大きさ 22cm
価格 ¥4500
内容紹介 動く曲線はどのように数値計算すればよいのか。界面現象を題材に、実験的収束次数(EOC)、偏微分方程式の差分解法など、さまざまな数値計算法を紹介する。問も多数収録。
書誌・年譜・年表 文献:p319~325
一般件名 数値計算-00571769-ndlsh,曲線-ndlsh-00567237
一般件名カナ スウチ ケイサン-00571769,キョクセン-00567237
一般件名 界面化学 , 曲線 , 数値計算
一般件名カナ カイメン カガク,キョクセン,スウチ ケイサン
一般件名典拠番号

510571600000000 , 510672900000000 , 511035700000000

分類:都立NDC10版 431.86
資料情報1 『動く曲線の数値計算』 矢崎 成俊/著  共立出版 2019.7(所蔵館:中央  請求記号:/431.8/5026/2019  資料コード:7111891174)
URL https://catalog.library.metro.tokyo.lg.jp/winj/opac/switch-detail.do?lang=ja&bibid=1153391102

目次 閉じる

第0章 コンピュータ上の「数」
  0.1 コンピュータの得手不得手
  0.2 浮動小数点数
  0.3 2進法
  0.4 IEEE754規格
  0.5 浮動小数点数の計算
  0.6 山中マジック
  0.7 結局,いいたいこと
第Ⅰ部 数値計算の基本
第1章 常微分方程式の数値解法
  1.1 離散変数法
  1.2 オイラー法の収束
  1.3 オイラー法の改良
  1.4 打ち切り誤差と丸め誤差
  1.5 EOC
  1.6 カオス登場
  1.7 単振り子の運動方程式
  1.8 「気の利いた」オイラー法
  1.9 シンプレクティック・オイラー法
第2章 数値積分
  2.1 区分求積法と数値積分
  2.2 左端点則と右端点則
  2.3 中点則と台形則
  2.4 シンプソン則
  2.5 「気の利いた」変形
第3章 非線形方程式の数値解法
  3.1 ニュートン法
  3.2 縮小写像の原理
  3.3 ニュートン法の収束
  3.4 ニュートンによるニュートン法
  3.5 2分法
  3.6 2分法の収束,および収束性の一般論
第Ⅱ部 偏微分方程式の差分解法
第4章 1階線形偏微分方程式の差分解法
  4.1 移流方程式
  4.2 偏微分方程式の差分解法
  4.3 移流方程式の全離散化
  4.4 前進差分スキーム(4.9)の不安定性
  4.5 風上差分スキーム(4.10)の安定性,適合性,収束性
  4.6 中心差分スキーム(4.11)とフォン・ノイマンの安定性
第5章 2階線形偏微分方程式の差分解法
  5.1 熱方程式の導出
  5.2 差分の記号
  5.3 熱方程式の初期値境界値問題(5.3)の離散化
  5.4 エネルギー不等式と「気の利いた」半陰的離散化
  5.5 保存量をもつ勾配流方程式
  5.6 半離散版の面積保存曲線短縮方程式
  5.7 拡散の遷移確率とCFL条件(4.14),安定条件(5.14)
第Ⅲ部 動く曲線の数値計算
第6章 動く曲線の問題
  6.1 時間変化する平面曲線とその表現
  6.2 さまざまな量の時間発展方程式
  6.3 さまざまな法線速度
  6.4 動く開曲線の問題
  6.5 開曲線版古典的面積保存曲率流方程式とディドの問題
第7章 動く折れ線上の「曲率」と「法線」
  7.1 時間変化する平面折れ線とその表現
  7.2 頂点や辺上の「曲率」と頂点における「法線」方向の変遷
  7.3 「曲率」ki,Ki,ki,は曲率の近似か
第8章 動く折れ線の問題
  8.1 準備
  8.2 さまざまな法線速度{vi}
  8.3 接線速度{Wi}の決定:漸近的一様配置法と曲率調整型配置
  8.4 アルゴリズム(線の方法)
  8.5 数値スキームの実例:蔵本-シバシンスキー方程式
第9章 間接法やグラフによる表現
  9.1 レベルセットの方法:等高線による動く曲線の表現
  9.2 グラフによる動く曲線の表現
  9.3 蔵本‐シバシンスキー方程式のスケール変換
  9.4 特異極限法:アレン-カーン方程式による動く曲線の表現
第10章 基本解近似解法(MFS)
  10.1 MFSとは
  10.2 MFSのアイディア
  10.3 不変スキーム
  10.4 MFSの数値計算例:ヘレ・ショウ問題
  10.5 隙間bが時間に依存するb=b(t)の場合の数値計算例