Ian Goodfellow, Yoshua Bengio, and Aaron Courville. -- The MIT Press, -- c2016. --

所蔵

所蔵は 1 件です。

所蔵館 所蔵場所 資料区分 請求記号 資料コード 所蔵状態 資料の利用
配架日 協力貸出 利用状況 返却予定日 資料取扱 予約数 付録注記 備考
中央 書庫 一般洋図書 F/007.1/G65/D 7109496180 Digital BookShelf
2018/01/30 可能 利用可   0

Eメールによる郵送複写申込みは、「東京都在住」の登録利用者の方が対象です。

    • 統合検索
      都内図書館の所蔵を
      横断検索します。
      類似資料 AI Shelf
      この資料に類似した資料を
      AIが紹介します。

資料詳細 閉じる

ISBN 0262035618 (hardcover : alk. paper)
ISBN13桁 9780262035613 (hardcover : alk. paper)
テキストの言語 英語                  
分類:NDC10版 007.13
個人著者標目 Goodfellow, Ian.
本タイトル Deep learning /
著者名 Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
出版地・頒布地 Cambridge, Massachusetts :
出版者・頒布者名 The MIT Press,
出版年・頒布年 c2016.
数量 xxii, 775 pages :
他の形態的事項 illustrations (some color) ;
大きさ 24 cm.
書誌注記 Includes bibliographical references (pages [711]-766) and index.
内容注記 Introduction -- APPLIED MATH AND MACHINE LEARNING BASICS -- Linear algebra -- Probability and information theory -- Numerical computation -- Machine learning basics -- DEEP NETWORKS: MODERN PRACTICES -- Deep feedforward networks -- Regularization for deep learning -- Optimization for training deep models -- Convolutional networks -- Sequence modeling: recurrent and recursive nets -- Practical methodology -- Applications -- DEEP LEARNING RESEARCH -- Linear factor models -- Autoencoders -- Representation learning -- Structured probabilistic models for deep learning -- Monte Carlo methods -- Confronting the partition function -- Approximate inference -- Deep generative models.
要約、抄録、注釈等 "Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and video games. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors"--Page 4 of cover.
著者標目 Bengio, Yoshua.
Courville, Aaron.
統一タイトル(シリーズ副出標目) Adaptive computation and machine learning.
シリーズ名・巻次 Adaptive computation and machine learning 
一般件名 Machine learning.
Machine learning.
資料情報1 『Deep learning /』(Adaptive computation and machine learning) Ian Goodfellow, Yoshua Bengio, and Aaron Courville. The MIT Press, c2016. (所蔵館:中央  請求記号:F/007.1/G65/D  資料コード:7109496180)
URL https://catalog.library.metro.tokyo.lg.jp/winj/opac/switch-detail.do?lang=ja&bibid=1352027743