Steven Weinberg. -- Cambridge University Press, -- 2015, -- Second edition.

所蔵

所蔵は 1 件です。

所蔵館 所蔵場所 資料区分 請求記号 資料コード 所蔵状態 資料の利用
配架日 協力貸出 利用状況 返却予定日 資料取扱 予約数 付録注記 備考
中央 2F 一般洋図書 F/421.3/W42/L 7114693378 配架図 Digital BookShelf
2022/03/08 可能 利用可   0
Eメールによる郵送複写申込みは、「東京都在住」の登録利用者の方が対象です。

資料詳細 閉じる

ISBN 1107111668 (hbk.)
ISBN13桁 9781107111660 (hbk.)
テキストの言語 英語                  
分類:NDC10版 421.3
個人著者標目 Weinberg, Steven,
生没年等 1933-2021,
本タイトル Lectures on quantum mechanics /
著者名 Steven Weinberg.
版表示 Second edition.
出版地・頒布地 Cambridge, United Kingdom :
出版者・頒布者名 Cambridge University Press,
出版年・頒布年 2015,
数量 xxii, 419 pages ;
大きさ 26 cm.
書誌注記 Includes bibliographical references and indexes.
内容注記 1.1. Photons -- Black-body radiation -- Rayleigh[--]Jeans formula -- Planck formula -- Atomic constants -- Photoelectric effect -- Compton scattering -- 1.2. Atomic Spectra -- Discovery of atomic nuclei -- Ritz combination principle -- Bohr quantization condition -- Hydrogen spectrum -- Atomic numbers and weights -- Sommerfeld quantization condition -- Einstein A and B coefficients -- Lasers -- 1.3. Wave Mechanics -- De Broglie waves -- Davisson-Germer experiment -- Schrödinger equation -- 1.4. Matrix Mechanics -- Radiative transition rate -- Harmonic oscillator -- Heisenberg matrix algebra -- Commutation relations -- Equivalence to wave mechanics -- Quantization of radiation -- 1.5. Probabilistic Interpretation -- Scattering -- Probability density and current -- Expectation values -- Equations of motion -- Eigenvalues and eigenfunctions -- Uncertainty principle -- Born rule for transition probabilities -- Historical Bibliography -- Problems -- 2.1. Schrödinger Equation for a Central Potential -- Hamiltonian for central potentials -- Orbital angular momentum operator L -- Spectrum of L2 -- Separation of wave function -- Boundary conditions -- 2.2. Spherical Harmonics -- Spectrum of L3 -- Associated Legendre polynomials -- Construction of spherical harmonics -- Orthonormality -- Parity -- Legendre polynomials -- 2.3. Hydrogen Atom -- Radial Schrodinger equation -- Power series solution -- Laguerre polynomials -- Energy levels -- Selection rules -- 2.4. Two-Body Problem -- Reduced mass -- Relative and center-of-mass coordinates -- Relative and total momenta -- Hydrogen and deuterium spectra -- 2.5. Harmonic Oscillator -- Separation of wave function -- Raising and lowering operators -- Spectrum -- Normalized wave functions -- Radiative transition matrix elements -- Problems -- 3.1. States -- Hilbert space -- Vector spaces -- Norms -- Completeness and independence -- Orthonormalization -- Probabilities -- Rays -- Dirac notation -- 3.2. Continuum States -- From discrete to continuum states -- Normalization -- Delta functions -- Distributions -- 3.3. Observables -- Operators -- Adjoints -- Matrix representation -- Eigenvalues -- Completeness of eigen-vectors -- Schwarz inequality -- Uncertainty principle -- Dyads -- Projection operators -- Density matrix -- Von Neumann entropy -- Disentangled systems -- 3.4. Symmetries -- Unitary operators -- Wigner's theorem -- Antiunitary operators -- Continuous symmetries -- Commutators -- 3.5. Space Translation -- Momentum operators -- Commutation rules -- Momentum eigenstates -- Bloch waves -- Band structure -- 3.6. Time Translation and Inversion -- Hamiltonians -- Time-dependent Schrödinger equation -- Conservation laws -- Time reversal -- Galilean invariance -- Boost generator -- Time-dependence of density matrix -- 3.7. Interpretations of Quantum Mechanics -- Copenhagen interpretation -- Measurement vs. unitary evolution of the density matrix -- Correlation of system and measuring apparatus -- Classical states -- Decoherence -- Stern[--]Gerlach experiment -- Schrödinger's cat -- Where does the Born rule come from-- Instrumentalist interpretations -- Decoherent histories -- Realist interpretations -- Many worlds-- Approach to the Born rule -- Conclusion -- Problems -- 4.1. Rotations -- Finite rotations -- Rotation groups O(3) and SO(3) -- Action on physical states -- Infinitesimal rotations -- Commutation relations -- Total angular momentum -- Spin -- 4.2. Angular-Momentum Multiplets -- Raising and lowering operators -- Spectrum of J2 and J3 -- Spin matrices -- Pauli matrices -- J3-independence -- Stern[--]Gerlach experiment -- 4.3. Addition of Angular Momenta -- Choice of basis -- Clebsch[--]Gordan coefficients -- Sum rules for coefficients -- Hydrogen states -- Symmetries of coefficients -- Addition theorem for spherical harmonics -- 3 j symbols -- More sum rules -- SU(2) formalism -- 4.4. Wigner[--]Eckart Theorem -- Operator transformation properties -- Theorem for matrix elements -- Parallel matrix elements -- Photon emission selection rules -- 4.5. Bosons and Fermions -- Symmetrical and antisymmetrical states -- Connection with spin -- Hartree approximation -- Pauli exclusion principle -- Periodic table for atoms -- Magic numbers for nuclei -- Temperature and chemical potential -- Statistics -- Insulators, conductors, semi-conductors -- 4.6. Internal Symmetries -- Charge symmetry -- Isotopic spin symmetry -- Pions -- Δs -- Strangeness -- U(1) symmetries -- SU(3) symmetry -- 4.7. Inversions -- Space inversion -- Orbital parity -- Intrinsic parity -- Parity of pions -- Violations of parity conservation -- P, C, and T -- 4.8. Algebraic Derivation of the Hydrogen Spectrum -- Runge[--]Lenz vector -- SO(3) x SO(3) commutation relations -- Energy levels -- Scattering states -- Four-dimensional interpretation -- 4.9. Rigid Rotator -- Laboratory and body-fixed coordinates -- Rotational energy -- Moment-of-inertia tensor -- Body-fixed angular momentum operator -- Energy levels of symmetric rotators -- Energy levels of general rotators -- Rotator wave functions -- Rotation representation DJM'M(R) -- Orthohydrogen and parahydrogen -- Estimated energies -- Problems -- 5.1. First-Order Perturbation Theory -- Non-degenerate case: first-order energy and state vector -- Degenerate case: first-order energy, ambiguity in first-order state vector -- classical analog -- 5.2. Zeeman Effect -- Gyromagnetic ratio -- Landé g-factor -- Sodium D lines -- Normal and anomalous Zeeman effect -- Paschen[--]Back effect -- 5.3. First-Order Stark Effect -- Mixing of 2s1/2 and 2p1/2 states -- Energy shift for weak fields -- Energy shift for strong fields -- 5.4. Second-Order Perturbation Theory -- Non-degenerate case: second-order energy and state vector -- Degenerate case: second-order energy, removal of ambiguity in first-order state vector -- Ultraviolet and infrared divergences -- Closure approximation -- Second-order Stark effect -- 5.5. Variational Method -- Upper bound on ground state energy -- Excited states -- Approximation to state vectors -- Virial theorem -- Other states -- 5.6. Born[--]Oppenheimer Approximation -- Reduced Hamiltonian -- Hellmann[--]Feynman theorem -- Estimate of corrections -- Electronic, vibrational, and rotational modes -- Effective theories -- 5.7. WKB Approximation -- Approximate solutions -- Validity conditions -- Turning points -- Energy eigenvalues [--] one dimension -- Energy eigenvalues [--] three dimensions -- 5.8. Broken Symmetry -- Approximate solutions for thick barriers -- Energy splitting -- Decoherence -- Oscillations -- Chiral molecules -- 5.9. Van der Waals Forces -- Expansion of interaction in spherical harmonics -- Second-order perturbation theory -- Dominance of the dipole[--]dipole term -- Problems -- 6.1. First-Order Perturbation Theory -- Differential equation for amplitudes -- Approximate solution -- 6.2. Monochromatic Perturbations -- Transition rate -- Fermi golden rule -- Continuum final states -- 6.3. Ionization by an Electromagnetic Wave -- Nature of perturbation -- Conditions on frequency -- Ionization rate of hydrogen ground state -- 6.4. Fluctuating Perturbations -- Stationary fluctuations -- Correlation function -- Transition rate -- 6.5. Absorption and Stimulated Emission of Radiation -- Dipole approximation -- Transition rates -- Energy density of radiation -- B-coefficients -- Spontaneous transition rate -- 6.6. Adiabatic Approximation -- Slowly varying Hamiltonians -- Dynamical phase -- Non-dynamical phase -- Degenerate case -- 6.7. Berry Phase -- Geometric character of the non-dynamical phase -- Closed curves in parameter space -- General formula for the Berry phase -- Spin in a slowly varying magnetic field -- 6.8. Rabi Oscillations and Ramsey Interferometers -- Two-state approximationE Rabi oscillation frequency -- Ramsey trick -- Precision measurements of transition frequencies -- 6.9. Open Systems -- Linear non-unitary evolution of density matrix -- Properties of evolution kernel -- Expansion of kernel in eigenmatrices -- Rate of change of density matrix -- Positivity -- Complete positivity -- Lindblad equation -- Increasing entropy -- Measurement -- Problems -- 7.1. In-States -- Wave packets -- Lippmann[--]Schwinger equation -- Wave packets at early times -- Spread of wave packet -- 7.2. Scattering Amplitudes -- Green's function for scattering -- Definition of scattering amplitude -- Wave packet at late times -- Differential cross section -- 7.3. Optical Theorem -- Derivation of theorem -- Conservation of probability -- Diffraction peak -- 7.4. Born Approximation -- First-order scattering amplitude -- Scattering by shielded Coulomb potential -- 7.5. Phase Shifts -- Partial wave expansion of plane wave -- Partial wave expansion of "in" wave function -- Partial wave expansion of scattering amplitude -- Scattering cross section -- Scattering length and effective range -- 7.6. Resonances -- Thick barriers -- Breit[--]Wigner formula -- Decay rate -- Alpha decay -- Ramsauer[--]Townsend effect -- 7.7. Time Delay -- Wigner formula -- Causality -- 7.8. Levinson's Theorem -- Historical introduction -- Particle states in a central potential -- General principles of quantum mechanics -- Spin et cetera -- Approximations for energy eigenstates -- Approximations for time-dependent problems -- Potential scattering -- General scattering theory -- The canonical formalism -- Charged particles in electromegnetic fields -- The quantum theory of radiation -- Entanglement.
要約、抄録、注釈等 Nobel Laureate Steven Weinberg combines exceptional physical insight with his gift for clear exposition, to provide a concise introduction to modern quantum mechanics, in this fully updated second edition of his successful textbook. Now including six brand new sections covering key topics such as the rigid rotator and quantum key distribution, as well as major additions to existing topics throughout, this revised edition is ideally suited to a one-year graduate course or as a reference for researchers. Beginning with a review of the history of quantum mechanics and an account of classic solutions of the Schrödinger equation, before quantum mechanics is developed in a modern Hilbert space approach, Weinberg uses his remarkable expertise to elucidate topics such as Bloch waves and band structure, the Wigner-Eckart theorem, magic numbers, isospin symmetry, and general scattering theory.
一般件名 Quantum theory.
資料情報1 『Lectures on quantum mechanics /』Second edition. Steven Weinberg. Cambridge University Press, 2015, (所蔵館:中央  請求記号:F/421.3/W42/L  資料コード:7114693378)
URL https://catalog.library.metro.tokyo.lg.jp/winj/opac/switch-detail.do?lang=ja&bibid=1352051985